
Annals of Fuzzy Mathematics and Informatics

Volume 1, No. 1, (January 2011), pp. 45- 53

ISSN 2093-9310

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Fixed point theorems in ε-chainable fuzzy metric
spaces via absorbing maps

Abhay S. Ranadive, Anuja P. Chouhan

Received 29 September 2010; Revised 28 October 2010; Accepted 4 November 2010

Abstract. In this paper, we prove a common fixed point by using a new
notion of absorbing maps in ε-chainable fuzzy metric space with reciprocal
continuity and semi-compatible maps. Also we illustrate the properties
of absorbing maps. Moreover, we demonstrate the necessity of absorbing
maps to find a common fixed point in ε-chainable fuzzy metric spaces. Our
result generalizes and extend the results of Cho et al. [1] and many other
similar results too.
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1. Introduction

In 1965 Zadeh [16] introduced the notion of fuzzy sets. After this during the
last few decades many authors have establish the existence of a lots of fixed point
theorems in fuzzy setting ; Especially Deng zi-ke [4], Erceg [5], George and Veeramani
[7, 8], Kaleva and Seikkala [9], Kramosil and Michalek [10]. In [7] George and
Veeramani modified the concept of fuzzy metric space which introduced by Kramosil
and Michalek [10]. Cho et al. [3] introduced the notion of semi-compatible maps
in a d-topological space. Singh et al. [13] introduced the notion of semi-compatible
maps in fuzzy metric space, and prove a common fixed point theorem in this space.
In [15] Vasuki introduce the concept of R-weakly commuting map, and prove a fixed
point theorem in fuzzy metric space. The first author Ranadive et al [12] introduced
the concept of absorbing mapping in metric space and prove the common fixed point
theorem in this space. Moreover they observe that the new notion of absorbing map
is neither a subclass of compatible maps nor a subclass of non-compatible maps. In
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[11] Mishra et al introduced absorbing maps in fuzzy metric space. In this paper, we
obtain common fixed point theorem by absorbing maps in ε-chainable fuzzy metric
space with reciprocal continuity and semi-compatible maps.

2. Preliminaries

In this section we recall some definitions and known results in fuzzy metric space.

Definition 2.1. (Zadeh [16]) Let X be a non-empty set. A fuzzy set A in X is a
function with domain X and value in [0, 1].

Definition 2.2. (Schweizer and Sklar [14]) A triangular norm ∗ (shortly t−norm)
is a binary operation on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1] the
following conditions are satisfied :

(1) a ∗ 1 = 1;

(2) a ∗ b = b ∗ a ;

(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d ;

(4) a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Definition 2.3. (George and Veeramani [7]) The 3-tuple (X, M, ∗) is called a fuzzy
metric space if X is an arbitrary non-empty set, ∗ is a continuous tnorm and M is a
fuzzy set in X2 × (0,∞) satisfying the following conditions; for all x, y, z ∈ X and
s, t > 0.

(FM1) M(x, y, 0) > 0 ;

(FM2) M(x, y, t) = 1 for all t > 0, iff x = y ;

(FM3) M(x, y, t) = M(y, x, t) ;

(FM4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) ;

(FM5) M(x, y, .) : (0,∞) → [0, 1] is continuous.

Example 2.4. (George and Veeramani [7]) Let (X, d) be a metric space. Define
a ∗ b = ab (or a ∗ b = min[a, b]) and for all x, y ∈ X and t > 0, M(x, y, t) = t

t+d(x,y) .
Then M(X, M, ∗) is a fuzzy metric space. We call this fuzzy metric M induced by
the metric d the standard fuzzy metric.

Definition 2.5. (George and Veeramani [7] A sequence {xn} in a fuzzy metric space
M(X, M, ∗) is called Cauchy if for each ε > 0 and t > 0, there exists n0 ∈ N such
that M(xn, xm, t) > 1− ε for all n,m ≥ n0. A fuzzy metric space M(X,M, ∗) is said
to complete if every Cauchy sequence in X converge to a point in X. A sequence
{xn} in X is convergent to x ∈ X if lim

n→∞
M(xn, x, t) > 1 − ε for each t > 0, there

exists n0 ∈ N .

Definition 2.6. A pair (A,B) of self maps of a fuzzy metric space M(x, y, ∗) is said
to be reciprocal continuous if lim

n→∞
ABxn = Ax and lim

n→∞
BAxn = Bx, whenever

there exists a sequence x ∈ X such that lim
n→∞

Axn = lim
n→∞

Bxn = x for some x ∈ X.
If A and B are both continuous then they are obviously reciprocally continuous but
not converse need not be true.
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Definition 2.7. (Cho and Kim) [2] Self mappings A and B of a fuzzy metric space
(X, M, ∗) is said to be weakly compatible if ABx = BAx when Ax = Bx for some
x ∈ X.

Definition 2.8. A pair (A,B) of self-maps of a fuzzy metric space (X,M, ∗) is said
to be semi-compatible if lim

n→∞
ABxn = Bx whenever there exist a sequence xn ∈ X

such that lim
n→∞

Axn = lim
n→∞

Bxn = x for some x ∈ X.

Definition 2.9. (Cho and Jung) [1] Let (X, M, ∗) be a fuzzy metric space and
ε > 0. A finite sequence x = x0, x1, ..., xn = y is called ε-chain from x to y if
M(xi, xi−1, t) > 1− ε for all t > 0 and i = 1, 2, ..., n.
A fuzzy metric space (X, M, ∗) is called ε-chainable if for any x, y ∈ X, there exists
an ε-chain from x to y.

Lemma 2.10. If for all x, y ∈ X, t > 0 and 0 < k < 1, M(x, y, kt) ≥ M(x, y, t),
then x = y.

Lemma 2.11. (Grabiec [6]) M(x, y, .) is non-decreasing for all x, y ∈ X.

The following proposition show that in the concept of reciprocal continuity the
notion of compatible and semi-compatibility of maps becomes equivalent.

Proposition 2.12. ( [11] Mishra et al) Let A and B be two self maps on a fuzzy
metric space M(X, M, ∗). Assume that (A,B) is reciprocal continuous then (A, B)
is semi-compatible if and only if (A,B) is compatible.

Definition 2.13. Let f and g be two self-maps on a fuzzy metric space (X, M, ∗)
then f is called g-absorbing if there exists a positive integer R > 0 such that
M(gx, gfx, t) ≥ M(gx, fx, t

R ) for all x ∈ X. Similarly g is called f -absorbing if
there exists a positive integer R > 0 such that M(fx, fgx, t) ≥ M(fx, gx, t

R ) for all
x ∈ X.

Example 2.14. (George and Veeramani [7]) Let (X, d) be usual metric space where
X = [2, 20] and M be the usual fuzzy metric on (X, M, ∗) where ∗ = tmin be the
induced fuzzy metric space with M(x, y, t) = t

t+d(x,y) and M(x, y, 0) = 0 for x, y ∈ X,
t > 0. We define

fx =





6 if 2 ≤ x ≤ 5; and x = 6
10 if x > 6
x−1

2 if x ∈ (5, 6)

gx =
{

2 if 2 ≤ x ≤ 5
x+1
3 if x > 5

It is easy to see that both (f, g) and (g, f) are not compatible but f is g−absorbing
and g is f − absorbing. [Hint : Choose xn = 5 + 1

2n : x ∈ N ][See [11] ].

Example 2.15. ( [11] Mishra et al) If X = [0, 1] be a metric space and d and M are
same as above example 2.12. Define f, g : X → X by fx = x

16 and gx = 1− x
3 . In this

example we can see that f and g are compatible pair of maps and f is g-absorbing
while g is f -absorbing [Hint : range of f = [0, 1

16 ] and range of g = [ 23 , 1]
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Our next example to show that absorbing maps need not commute at their coinci-
dence points, thus the notion of absorbing maps is different from other generalization
of commutativity which force the mapping to commute at coincidence points.

Example 2.16. ( [11] Mishra et al) Let X = [0, 1] be a metric space and d and M
are same as in above example 2.12. Define f, g : X → X by

fx =
{

1 for x 6= 1
0 for x = 1

and gx = 1 for x ∈ X.Then the maps f and g-absorbing for any R > 1 but the pair
of maps (f, g) do not commute at their coincidence point x = 0.

Following theorem is proved by Cho et al [1]

Theorem 2.17. Let (X, M, ∗) be a complete ε-chainable fuzzy metric space and let
A,B, S and T be self mappings of X satisfying the following conditions;

(1) AX ⊂ TX and BX ⊂ SX;

(2) A and S are continuous ;

(3) the pair [A,S] and [B, T ] are weakly compatible ;

(4) there exists q ∈ (0, 1) such that
M(Ax,By, qt) ≥ M(Sx, Ty, t)∗M(Ax, Sx, t)∗M(By, Ty, t)∗M(Ax, Ty, t) for every
x, y ∈ X and t > 0. Then A,B, S and T have a unique common fixed point in X.

3. Main result

In this paper, we prove a fixed point theorem in which we totally replace continuity
condition by using weaker notion of reciprocal continuity and employing absorbing
mapping and semi-compatibility.

Theorem 3.1. Let A,B, S, T, L and M be self mappings of a complete ε-chainable
fuzzy metric space (X, M, ∗) with continuous t−norm defined by a ∗ b = min{a, b},
satisfying :

(1) L(X) ⊆ ST (X),M(X) ⊆ AB(X) ;

(2) M is ST absorbing ;

(3) AB = BA, ST = TS, LB = BL, MT = TM ;

(4) there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

M(Lx,My, kt) ≥ min{M(ABx, STy, t),M(Lx, ABx, t),

M(My, STy, t),M(Lx, STy, t)}.
If {L,AB} is reciprocally continuous semi-compatible maps. Then A,B, S, T, L and
M have a unique fixed point in X.

Proof. Let x0 ∈ X be any arbitrary point. From (1), there exists x1, x2 ∈ X such
that Lx0 = STx1 = y0 and Mx1 = ABx2 = y1. Inductively we can construct
sequence {xn} and {yn} in X such that Lx2n = STx2n+1 = y2n and Mx2n+1 =
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ABx2n+2 = y2n+1 for n = 0, 1, 2, .... Putting x = x2n, y = x2n+1 for t > 0 in (4); we
get

M(Lx2n,Mx2n+1, kt) ≥ min{M(ABx2n, STx2n+1, t), M(Lx2n, ABx2n, t),
M(Mx2n+1, STx2n+1, t),M(Lx2n, STx2n+1, t)}

that is,

M(y2n, y2n+1, kt) ≥ min{M(y2n−1, y2n, t), M(y2n, y2n−1, t),

M(y2n+1, y2n, t),M(y2n, y2n, t)}
≥ min{M(y2n−1, y2n, t), M(y2n+1, y2n, t)}
= M(y2n−1, y2n, t).

Similarly we put x = x2n+2 and y = x2n+1 in (4); we have

M(Lx2n+2,Mx2n+1, kt) ≥ min{M(ABx2n+2, STx2n+1, t), M(Lx2n+2, ABx2n+2, t),
M(Mx2n+1, STx2n+1, t),M(Lx2n+2, STx2n+1, t)}

that is

M(y2n+2, y2n+1, kt) ≥ min{M(y2n+1, y2n, t),M(y2n+2, y2n+1, t),
M(y2n+1, y2n, t),M(y2n+2, y2n, t)}

M(y2n+2, y2n+1, kt) ≥ min{M(y2n+1, y2n, t),M(y2n+1, y2n+2, t)} = M(yn, yn+1, t).

M(yn, yn+1, t) ≥ M(yn, yn−1, t/k) ≥ M(yn, yn−1, t/k2)
≥ ..... ≥ M(yn, yn−1, t/kn) → 1 as n →∞.

So, M(yn, yn+1, t) → 1 as n → ∞ and for any t > 0. For each ∈> 0 and each
t > 0, we can choose n0 ∈ N such that M(yn, yn+1, t) > 1− ∈. For m,n ∈ N , we
suppose m ≥ n. Then we have that

M(yn, ym, t) ≥ min{M(yn, yn+1,
t

m−n ),M(yn+1, yn+2,
t

m−n )

....M(ym−1, ym, t
m−n )}

> min{(1− ε), (1− ε), ..., (1− ε)} ≥ 1− ε, and hence {yn} is a Cauchy sequence in
X.Since X is complete therefore {yn} → z in X and its subsequences {ABx2n},
{Mx2n+1}, {STx2n+1} and {Lx2n} also converges to z.Since X is ε-chainable, there
exists ε-chain from xn to xn+1, that is, there exists a finite sequence, xn = y1, y2,
..., yl = xn+1 such that

M(yi, yi−1, t) > 1− ε, for all t > 0 and i = 1, 2, ....

Thus, we have

M(xn, xn+1, t) ≥ min{M(y1, y2, t/l),M(y2, y3, t/l), ...M(yl−1, yl, t/l)}

> min{(1− ε), (1− ε), ..., (1− ε)} ≥ (1− ε).
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For m > n,

M(xn, xm, t) ≥ min{M(xn, xn+1, t/m− n), M(xn+1, xn+2, t/m− n), ...
M(xm−1, xm, t/m− n)}

> min{(1− ε), (1− ε), ..., (1− ε)} ≥ (1− ε),

and so {xn} is a Cauchy sequence in X and hence there exists x ∈ X such that
xn → z. By the reciprocally continuity and Semi-compatibility of maps (L,AB) ;
we have,

lim
n→∞

L(AB)x2n = Lz, and lim
n→∞

AB(L)x2n = ABz

and

lim
n→∞

L(AB)x2n = ABz,

which implies that Lz = ABz.
Step (1): By putting x = z, y = x2n+1 in (4), we get

M(Lx2n,Mx2n+1, kt) ≥ min{M(ABz, STx2n+1, t),M(Lz, ABz, t),
M(Mx2n+1, STx2n+1, t),M(Lz, STx2n+1, t)}

Letting n →∞ ; we get

M(Lz, z, kt) ≥ min{M(Lz, z, t),M(Lz, Lz, t),M(z, z, t),M(Lz, z, t)}
i. e.

M(Lz, z, kt) ≥ M(Lz, z, t);

Thus we get Lz = z = ABz.
Step 2 : By putting x = Bz and y = x2n+1 in (4), we get

M(L(Bz),Mx2n+1, kt) ≥ min{M(AB(Bz), STx2n+1, t),M(L(Bz), AB(Bz), t),
M(Mx2n+1, STx2n+1, t),M(L(Bz), STx2n+1, t)}

Since AB = BA, LB = BL; therefore AB(Bz) = B(ABz) = Bz and L(Bz) =
B(Lz) = Bz; Letting n →∞ ; we get

M(Bz, z, kt) ≥ min{Bz, z, t), M(Bz,Bz, t), M(z, z, t), M(Bz, z, t)}
i.e.

M(Bz, z, kt) ≥ M(Bz, z, t).

Hence by Lemma 2.8

Lz = Az = Bz = z.

Since L(X) ⊆ ST (X), there exists u ∈ X such that z = Lz = STu.
Step 3 : By putting x = x2n, y = u in (4), we get

M(Lx2n,Mu, kt) ≥ min{M(ABx2n, STu, t),M(Lx2n, ABx2n, t),
M(Mu, STu, t),M(Lx2n, STu, t)}

Letting n →∞ ; we get

M(z, Mu, kt) ≥ min{M(z, z, t),M(z, z, t),M(Mu, z, t), M(z, z, t)}
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M(z, Mu, kt) ≥ M(z,Mu, t).

z = Mu = STu. Since M is ST-absorbing then we have;

M(STu, STMu, t) ≥ M(STu,Mu, t/R) = 1;

STMu = STu ⇒ z = STz.

Step 4 : By putting x = x2n, y = z in (4), we get

M(Lx2n, Mz, kt) ≥ min{M(ABx2n, STz, t),
M(Lx2n, ABx2n, t),M(Mz, STz, t),M(Lx2n, STz, t)}

Letting n →∞ ; we get

M(z, Mz, kt) ≥ min{M(z, z, t),M(z, z, t),M(Mz, z, t),M(z, z, t)}

M(z,Mz, kt) ≥ M(z,Mz, t).

Hence by Lemma 2.8 z = Mz = STz.
Step 5 : By putting x = x2n, y = Tz in (4), we get

M(Lx2n,M(Tz), kt) ≥ min{M(ABx2n, ST (Tz), t),M(Lx2n, ABx2n, t),
M(M(Tz), ST (Tz), t),M(Lx2n, ST (Tz), t)}

Since ST = TS, and MT = TM ; therefore M(Tz) = T (Mz) = Tz, ST (Tz) =
T (STz) = Tz and Letting n →∞ ; we get

M(z, Tz, kt) ≥ min{M(z, Tz, t),M(z, z, t),M(Tz, Tz, t),M(z, Tz, t)}

M(z, Tz, kt) ≥ M(z, Tz, t).

Hence by Lemma 2.8 z = Tz = Mz = Sz. Therefore z = Az = Bz = Sz =
Tz = Lz = Mz. i.e. z is a fixed point of A, B, S, T, L and M .
Uniqueness : Let w be another fixed point of A,B, S, T, L and M ; therefore
putting x = z and y = w in (4), we have

M(Lz, Mw, kt) ≥ min{M(ABz, STw, t), M(Lz,ABz, t),
M(Mw, STw, t),M(Lz, STw, t)}

M(z, w, kt) ≥ min{M(z, w, t),M(z, z, t),M(w, w, t),M(z, w, t)}
i. e., z = w by Lemma 2.8 . Hence z is a unique fixed point in X. This completes
the proof. ¤

Corollary 3.2. Let A,B, S, T, L and M be self mappings of a complete ε-chainable
fuzzy metric space (X, M, ∗) with continuous t−norm defined by a ∗ b = min{a, b},
satisfying (1) - (4) of Theorem 3.1 and there exists k ∈ (0, 1) such that for all
x, y ∈ X and t > 0,

M(Lx,My, kt) ≥ min{M(ABx, STy, t), M(Lx,ABx, t),M(My, STy, t),
M(Lx, STy, t),M(ABx, My, 2t)}

If {L,AB} is reciprocally continuous semi-compatible maps. Then A,B, S, T, L and
M have a unique fixed point in X.
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Proof. Since

M(Lx,My, kt) ≥ min{M(ABx, STy, t), M(Lx,ABx, t),M(My, STy, t),
M(Lx, STy, t),M(ABx, My, 2t)}

≥ min{M(ABx, STy, t),M(Lx, ABx, t), M(My,STy, t),M(Lx, STy, t),
M(ABx, STy, t),M(STy,My, t)}

≥ min{M(ABx, STy, t),M(Lx,ABx, t),M(My, STy, t),M(Lx, STy, t)}
and hence, from Theorem 3.1, A,B, S, T, L and M have a unique fixed point in
X. ¤
Corollary 3.3. Let A,B, S, T, L and M be self mappings of a complete ε-chainable
fuzzy metric space (X, M, ∗) with continuous t−norm defined by a ∗ b = min{a, b},
satisfying of Theorem 3.1 and there exists k ∈ (0, 1) such that for all x, y ∈ X and
t > 0,

M(Lx,My, kt) ≥ M(ABx, STy, t)

If {L,AB} is reciprocally continuous semi-compatible maps. Then A,B, S, T, L and
M have a unique fixed point in X.

Proof. Since

M(Lx,My, kt) ≥ {M(ABx, STy, t), 1}
≥ min{M(ABx, STy, t),M(Lx,Lx, 5t)}

≥ min{M(ABx, STy, t),M(Lx,ABx, t),M(ABx, Qy, 2t),
M(Qy, STy, t),M(STy, Lx, t)}

and hence from Corollary 3.2, A, B, S, T, L and M have a unique fixed point in
X. ¤

Let AB and ST be the identity mapping on X in Corollary 3.3. Then we get the
next result.

Corollary 3.4. Let L and M be self mappings of a complete ε-chainable fuzzy metric
space (X, M, ∗) with continuous t − norm defined by a ∗ b = min{a, b}, satisfying
the following condition ; there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

M(Lx,My, kt) ≥ M(x, y, t)

Then L and M have a unique fixed point in X.

In Corollary 3.4, if we take L = M , then this result become to Banach contraction
theorem.

Corollary 3.5. Let L be self mappings of a complete ε-chainable fuzzy metric
space (X, M, ∗) with continuous t − norm defined by a ∗ b = min{a, b}, satisfying
the following condition ; there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

M(Lx,Ly, kt) ≥ M(x, y, t)

Then L has a unique fixed point in X.
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